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1   |   INTRODUCTION

The rapid development of big data-related technologies 
makes big data-driven scientific research increasingly im-
portant in geosciences. Geoscience research often relies 
on a large amount of exploration data. The shifting of the 
data-driven research paradigm raises new requirements 
for researchers to build scientific databases (Hoeppe, 2021) 
in Geoscience (Bergen et al.,  2019). Scientific database 

is a collection of structured and verified research re-
sults that consist of various numeric, word-oriented or 
image-organized data, which plays a central role in data-
driven research (National Research Council, Division 
on Engineering and Physical Sciences, Commission 
on Physical Sciences, Mathematics, and Applications, 
Committee for a Study on Promoting Access to Scientific 
and Technical Data for the Public Interest et al.,  2000). 
The collection and organization of scientific data is a 
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Abstract
With the rapid development of big data science, the research paradigm in the 
field of geosciences has also begun to shift to big data-driven scientific discovery. 
Researchers need to read a huge amount of literature to locate, extract and ag-
gregate relevant results and data that are published and stored in PDF format 
for building a scientific database to support the big data-driven discovery. In this 
paper, based on the findings of a study about how geoscientists annotate literature 
and extract and aggregate data, we proposed GeoDeepShovel, a publicly avail-
able AI-assisted data extraction system to support their needs. GeoDeepShovel 
leverages state-of-the-art neural network models to support researcher(s) easily 
and accurately annotate papers (in the PDF format) and extract data from ta-
bles, figures, maps, etc., in a human–AI collaboration manner. As a part of the 
Deep-Time Digital Earth (DDE) program, GeoDeepShovel has been deployed for 
8  months, and there are already 400 users from 44 geoscience research teams 
within the DDE program using it to construct scientific databases on a daily basis, 
and more than 240 projects and 50,000 documents have been processed for build-
ing scientific databases.
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critical step in the research process. Scientific data as an 
infrastructure, the source of data, accuracy, depth, breadth 
of data and other perspectives jointly affect the research 
progress. In the field of geoscience, a single research team 
is limited by region and time and often cannot rely on it-
self to complete a large amount of original data collection, 
which also makes the reuse, sharing and disclosure of sci-
entific data an essential issue in geoscience research. The 
FAIR (findable, accessible, interoperable and reusable) 
Guiding Principles (Wilkinson et al., 2016) make the con-
struction and management of current scientific data have 
a common goal. And the Deep-Time Digital Earth (DDE) 
program (Oberhänsli,  2020), which is a data-driven dis-
covery program in geoscience with a goal of aggregating 
the geoscience data and facilitating data-driven discovery 
for understanding Earth's evolution (Wang et al.,  2021), 
also puts forward the vision of co-construction and shar-
ing of geoscience data.

However, the DDE program finds that current diffi-
culties of data-driven discovery include the lack of digi-
tization, and databases do not adhere to FAIR principles 
(Wang et al., 2021). There are still lots of research data scat-
tered in the past literature which needs to be collected and 
sorted so that they can be shared and reused. Therefore, 
the collection and collation of data in the past literature 
is a very important and arduous task, and many research 
groups are still committed to it. Geoscientists often review 
a large amount of published literature to obtain enough 
high-quality data (McMahon & Davies, 2018; Puetz, 2018; 
Puetz et al., 2018) (generally PDF documents), from which 
they locate and extract valuable data (e.g. tables, figures, 
maps, etc.) to construct the scientific databases. Many in-
fluential studies have also been built on such data collec-
tion efforts, such as Fan et al.  (2020), Dirzo et al.  (2014) 
and Tucker et al. (2018).

The current literature is often disseminated in the form 
of PDF, and these data are stored in unstructured form, 
including pictures, tables and texts. The typical way is 
to manually read the literature to extract these data and 
organize and write them into the scientific database (see 
Figure 1). The traditional manual extraction process has a 
low degree of automation and consumes a lot of human 
resources and material resources, which largely hinders 
small teams from conducting research related to big data. 
Although some larger research teams may have more 
workforce, without a well-designed collaborative plat-
form, they still need to spend lots of effort to process a 
sufficient amount of literature and extract enough data for 
the scientific database (Renaudie et al., 2020). Because of 
these challenges, constructing a scientific database using 
the data extracted from a large number of papers often 
takes several years with a large workforce, which is a mas-
sive obstacle to the advancement of research.

In this work, we focus on the need to construct scien-
tific databases in geoscience, which can help geoscien-
tists to discover unknown phenomena and novel insights 
into Earth (Dirzo et al.,  2014; Fan et al.,  2020; Tucker 
et al., 2018). Scientific data research works often focus on 
the analysis and research of datasets but ignore the data-
set construction process and the difficulties researchers 
encounter in this process. As a part of the DDE program, 
our research is committed to building an AI-assisted plat-
form to help geoscience research teams complete data ex-
traction, integration and storage in one-stop, and builds a 
scientific database to make the data conform to the FAIR 
principle.

In the past, many researchers in geoscience tried to build 
an integrated platform from data collection and storage to 
data analysis, which promoted the sharing of geoscience da-
tabases and big data research. Chronos (Cervato et al., 2005) 
is a community facility addressing the needs of geoinformat-
ics and providing simultaneous and seamless integration of 
hosted and federated databases with analytical and visual-
ization tools. Paleostrat (Snyder et al., 2008) is designed as 
an infrastructure platform for Geoscience researchers and 
teachers, which serves the community by enhancing the re-
search and education process. However, they mainly focus 
on the design of the schema for the data utilized instead of 
trying to make a user-friendly interface for geoscientists to 
easily extract desired information. It leads to the result that 
these platforms can hardly generate enough data to support 
a healthy life cycle. GeoDeepDive (Zhang et al., 2013) is a 
widely used toolkit that adopts natural language processing 
(NLP) technology to process and analyse the literature end-
to-end. However, due to the complete dependence on the 
end-to-end extraction method (Govindaraju et al.,  2013), 
the lack of labelled data has introduced the problem of 
insufficient data accuracy, which leads to a result that the 
data extracted by GeoDeepDive cannot play a great role in 
the research that requires accurate data for modelling and 
analysis (Sun et al.,  2022). Moreover, these methods can 
only cover the text part (Ashktorab et al., 2021; Desmond 
et al., 2021; Niu et al., 2012), use NLP to analyse the tables 
with the content (Govindaraju et al., 2013) and cannot pro-
cess data from tables and pictures, which leads to damage 
to the integrity of the data, which is also detrimental to re-
search. Besides, researchers would have to pay extra effort 
to label and clean the training data to make the end-to-end 
AI model work, which may take even more time than man-
ually extracting data without using an AI.

In this paper, we argue that instead of designing a fully 
automated end-to-end solution, a human–AI collabo-
rative and interactive system may be the solution to ad-
dress these problems. Geoscientists can perform the data 
extraction activity as they used to, and AI can train itself 
with these user-labelled data and then make suggestions 
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      |  3ZHANG et al.

to the user in the future. Together, the human–AI team can 
accurately extract data at a much lower cost. Considering 
the work on extracting and integrating data from past 
literature and building databases in data-driven geosci-
ence discovery, we designed GeoDeepShovel, an artificial 
intelligence-based collaborative data extraction platform, 
to assist geoscience research teams in data extraction, 
data aggregation and scientific database construction. 
GeoDeepShovel provides a user-friendly interface and ex-
perience design following the human–AI interaction de-
sign guidelines (Amershi et al., 2019) so that users even 
without any AI backgrounds can also work comfortably 
with it. In such a human–AI collaboration process, we 
use human participation to ensure the precision and ac-
curacy of the data. The assistance of AI can greatly reduce 
the manual workload of humans. Researchers only need 

to judge whether the data are correct and make small 
corrections to extract and import the data into the da-
tabase. Further, GeoDeepShovel can extract data in pic-
tures and tables, which greatly increases the diversity of 
data, which can make the extracted research data more 
complete and facilitate subsequent analysis and research. 
GeoDeepShovel has been deployed for 8 months and there 
are already 400 users from 44 geoscientist teams within 
the DDE program using it on a daily basis. We have coop-
erated with the OneSediment team in the DDE program 
and 26 thematic databases in OneSediment have used 
GeoDeepShovel for data extraction currently.

We first analyse the data content of current scientific 
databases in the earth sciences, describe the distribution 
and extraction process of these data in the article and 
discuss the difficulties existing in the current process 

F I G U R E  1   A workflow's example for extracting data from a literature and save to database. The researchers extract the corresponding 
values of the attributes of the samples from different parts of the article and fill them in the dataset. (Figures and table are from (Armstrong-
Altrin, 2020). The database is from (Puetz, 2018). This flowchart is just show the workflow but does not show the real data.).
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4  |      ZHANG et al.

(Section 2). We provide an overview of the system we have 
built in Section 3. We detail how researchers use our sys-
tem to extract data scattered across literature texts, images 
and tables with the aid of artificial intelligence while help-
ing our model gather training data. After data extraction, 
researchers can integrate the data extracted from multiple 
documents into one file according to the storage method 
of the database, which is convenient for data storage. We 
conclude by discussing how we will continue to advance 
this work in the future (Section  4). Our work combines 
professional knowledge from multiple disciplines such as 
artificial intelligence, human–computer interaction, data 
management, software design and earth science research, 
and has conducted sufficient user research and verifica-
tion, hoping to provide data-driven scientific research in 
geoscience a guide of data extraction working practices.

2   |   CHALLENGES TO SUPPORT 
DATA EXTRACTION WORKFLOW 
FOR SCIENTIFIC DISCOVERY

2.1  |  Scientific database in geoscience 
and current workflow of construction

Scientific database is a collection of structured and verified 
research results that consists of various numeric, word-
oriented or image-organized data, which plays a central 
role in data-driven research (National Research Council, 
Division on Engineering and Physical Sciences, Commission 
on Physical Sciences, Mathematics, and Applications, 
Committee for a Study on Promoting Access to Scientific and 
Technical Data for the Public Interest et al., 2000). We take 
“A relational database of global U–Pb ages”(Puetz, 2018) as 
an example to explain the composition of a scientific data-
base in geoscience research. This database contains 700,598 
records of global U–Pb ages. The data are restructured and 
made available as a relational database. The database is 
available in two formats – a Microsoft® Excel™ version with 
only the basic data and a Microsoft® Access™ version with 
the basic data plus graphic functionality.

In the Microsoft® Excel™ version (the screenshot 
shown in Figure 1 Dataset part), there are six sheets in-
cluding Reference Details, Sample Details, Data, Rock 
Type Lists, Other Lists and Summary. The Reference 
Details sheet includes the reference articles' meta-
information and the reference Key. Sample Details 
sheet shows each sample from different articles and the 
attributes of the samples such as geographic location, 
latitude and longitude information, lithology, original 
sample ID, etc. Moreover, the Data sheet is the main data 
containing the U–Pb ages of each sample. These three 
sheets are related by the reference Key and the sample 

Key. Rock Type Lists, Other Lists and Summary are 
some information about the attributes and the database.

In the Microsoft® Access™ version, more detailed data 
are provided expect the information in the Microsoft® 
Excel™ version. There are 20 tables in the database as 
shown in Figure 2.

From this example, we can find that the main informa-
tion the dataset/database provided is the source of the data 
and various geologically relevant attributes of the samples. 
Compared with the Microsoft® Excel™ version, we can find 
that the Microsoft® Access™ version provides more de-
tailed information, including the journal list of the articles 
and the statistics and summaries of some items in the data-
set. However, the core data about the sample and its de-
scription are consistent. This indicates that the data in the 
Microsoft® Excel™ version are completely available for the 
study, and the additional details in the Microsoft® Access™ 
version are used for some statistics and corroboration of the 
data. This is consistent with the findings of our interviews 

F I G U R E  2   The tables' list of the MicrosoftR Access™ version 
database.
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      |  5ZHANG et al.

and studies with many research teams in the DDE pro-
gram. Geoscience research teams typically use Microsoft® 
Excel™ to store data briefly and use a Microsoft® Excel™ 
version for publication. Furthermore, the data storage form 
is generally Microsoft® Excel™ (Brand et al.,  2015; Puetz 
et al., 2018) and some commonly used database formats, 
such as Microsoft® Access™(Puetz, 2018) and MySQL.

Although researchers from different sub-fields of geo-
science may study different research questions and focus 
on different data, their research processes and workflows 
are basically the same. Figure 1 shows the typical work-
flow of the database construction for big data discovery 
in common geoscience research. Based on the practice 
in DDE program, we conclude the task in this workflow 
(see Figure 3). These tasks are grouped and detailed by the 
main workflow steps in the following list:

•	 T1-Problem Definition: Define the research problem 
and the structure of the scientific database that needs to 
be built,

•	 T2-Search: Search for the paper that may contain data 
about the research problem,

•	 T3-Scan: Quickly scan the article to find data that is 
needed,

•	 T4-Meta-Information Extraction: Record the litera-
ture's meta-information for tracking the data,

•	 T5-Detail Data Extraction: Extract data from differ-
ent parts of the literature,
•	 Data extraction from the table: Get the data in the 

table and fill in the Microsoft® Excel™ file prepared 
in an advance cell by cell,

•	 Information extraction from the text: Search the 
full text with keywords to locate the data, fill in the 
data in the Microsoft® Excel™ file after finding it and 
repeat until all the data are found,

•	 Information extraction from the figure: Restore 
the corresponding information from the images, 
especially obtaining the latitude and longitude of a 
marked point from the map,

•	 T6-Proofreading: Check and proofread the data to en-
sure the data are accurate,

•	 T7-Data Integration: Integrate the data extracted from 
each paper (usually stored in a bunch of Microsoft® 
Excel™ files) into the final dataset (Figure 3).

2.2  |  Challenges from multi-modal data 
in geoscience literature

The construction of a scientific database for big data re-
search in geosciences requires data from four different 
parts of the literature: literature metadata, text, tabular 
data and map.

When extracting data, the most basic and essential point 
is to record the source of the data, which is the Metadata 
of the literature. The purpose of recording article meta-
information is to make each data entry traceable. Therefore, 
this meta-information will be integrated into each data entry 
extracted from the current article as part of the attributes. 
The metadata includes title, author(s), published year, key-
words, publisher, ISSN, volume, issue, DOI, language and 
other additional information. Metadata usually appear on 
the first page of an article, with some formatting differences 
due to different publishers and journal page layouts (as 
shown in Figure 4). The different formats bring difficulty to 
extract the metadata manually. It takes a long time to extract 
literature metadata, requiring multiple step-by-step replica-
tions. Typically, researchers use academic search engines 
such as Google Scholar and the Web of Science to obtain 
the metadata (McMahon & Davies, 2018), but this requires 
additional searching and sorting, which still results in much 
time being wasted on mechanical tasks.

Tables are the best way to carry large amounts of data 
in scientific literature. In the geoscience literature, authors 
often use tables to present measurements and chemical anal-
yses of the samples. There are specific differences in each 
author's writing habits and research process, which makes 
the styles of these tables also vary (as shown in Figure 5).

Researchers usually use some OCR tools with graph-
ical user interfaces to process PDF documents to make 
them editable and then manually copy-paste the data they 

F I G U R E  3   The team's workflow of collecting and building a database from geoscience literature.
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find into Microsoft® Excel™. This method will bring a 
huge workload and is prone to errors when the number of 
rows and columns in the table is large. The other type is 
that the author publishes the data in the form of an appen-
dix. However, the file formats of the appendix are very di-
verse, including but not limited to *.doc, *.xlsx, *.pptx and 
*.csv because there is no unified specification, which also 
brings more incredible difficulty to manual extraction. As 
a result, geoscientific researchers unfamiliar with related 
programming techniques often choose the most primi-
tive way of copying and pasting one by one for extraction, 
which makes the workload extremely large.

As the main part of the article, the text contains the 
research object of the article and its related attributes, in-
cluding but not limited to the name, lithology, geological 
age and geographical location of the research object (as 
shown in Figure 6). This information is an essential part of 
the scientific dataset. However, the text part of the article 

is unstructured, and due to the different writing styles 
of researchers and the different organization of research 
work, the distribution of this information is not regular 
to follow. At the same time, since there may be multiple 
research object subjects in an article, the distribution of 
this information may be more complicated (such as using 
“respectively” sentences to describe the value of the same 
attribute of two objects). In manual extraction, it is often 
necessary to rely on the researcher's professional domain 
knowledge and experience from reading literature to 
search for the needed information. Because the informa-
tion eventually needs to be organized into a database, re-
searchers often spend much time linking the information 
together. For example, a description such as “sample A 
was collected at location B” needs to be defined and stored 
as a triple “sample A - collection location - location B.” 
This process of linking information can also be extremely 
difficult without the support of tools.

F I G U R E  4   Different layouts of the articles' first pages form of an appendix. However, the 148 file formats of the appendix are very 
diverse. (a) First page layout of an article from Journal of Palaeogeography (Armstrong-Altrin, 2020). (b) First page layout of an article from 
Science (Fan et al., 2020).

F I G U R E  5   Different Table Styles of Articles. (a) A table from Detrital zircon U–Pb geochronology and geochemistry of the Riachuelos 
and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: a new insight on palaeoenvironment (Armstrong-Altrin, 2020). (b) A table 
from Global database of diffuse riverine nitrogen and phosphorus loads and yields (McDowell et al., 2021).
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Geographical location information, as fundamental data 
in geoscience, often appears in articles in the form of maps. 
Such geographic location information may be used to de-
scribe the geographic location of the research subject of the 
article or the sampling point of the article's related research 
objects (as shown in Figure 7). The geographic location dis-
played on a map often does not display accurate latitude and 
longitude data. It is necessary to use the ruler or coordinate 
system of the map to read the relevant points to obtain the 
latitude and longitude values that can be stored. However, 
there are often many marked points on the map, and it is 
often difficult to convert the latitude and longitude coordi-
nates of the pictures in the PDF. Researchers need to extract 
the map image from the PDF first and then use other tools, 
such as ArcGIS, to reconstruct the latitude and longitude 
coordinates of the map in order to read the accurate lati-
tude and longitude data of the data points. Such a complex 
operational process currently requires the use of several dif-
ferent tools to perform, which is inefficient. Moreover, mul-
tiple conversions will also cause the accumulation of errors, 
which is not conducive to the accuracy of the final data.

2.3  |  Summary

Due to the difference in encoding, version and source of 
PDF documents, the structure of internally stored digital in-
formation is chaotic and cannot be processed automatically 
by machines. Especially for some PDF files scanned from 
paper, the scanning quality dramatically affects the results 
of automated processing. Secondly, the scientific literature is 
a particular document presented in PDF format. Its purpose 
is not to present structured data but to express the author's 
research and opinions. Therefore, the data are scattered in 

different paragraphs and tables or figures according to dif-
ferent expression purposes, but not in a structured form. 
Based on the four different types of data we have discussed 
above and their distribution, we can understand the current 
challenges in extracting scientific data from the literature:

1.	 A large amount of articles need to be processed, but 
the manual extraction process faces a lot of mechan-
ical labour (copy and paste as well as collation).

2.	 The complex structure of scientific literature makes 
searching for information difficult. The difficulty of 
extracting information is exacerbated by the different 
formats used by different journals.

3.	 The data in figures and tables cannot be extracted 
quickly due to the PDF format, and even with the help 
of tools, a complex process is required.

3   |   OUR SOLUTION: 
GEODEEPSHOVEL

From February 2022, GeoDeepShovel has been deployed, 
and more than 40 geoscience research teams from geosci-
ence departments of more than 10 universities are using 
GeoDeepShovel for data extraction and scientific database 
construction. As we mentioned in §2.1, to construct a scien-
tific database, researchers need to process a large number of 
files and need to distribute files to team members for data ex-
traction. It is a complex task for a research team to store and 
manage such a large number of documents. Considering 
that there are different members in the research team, the 
team needs to be divided into the data extraction task and 
the research team also needs to cooperate and communi-
cate, team management is a considerable challenge.

F I G U R E  6   Examples of research object descriptions in the text. The pictures are from the screenshots of the article PDFs. In different 
articles, the authors use different sentences to describe similar information. Differences in article publishers and templates further lead to 
different forms of text presentation, which brings challenges to digital processing. (a) The location description of the research area from 
Detrital zircon U–Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: a 
new insight on palaeoenvironment (Armstrong-Altrin, 2020). The yellow highlight is the area name, the green highlight is the location and 
the blue highlight is the latitude and longitude. (b) The lithology description of the research object from Rock Magnetism of Lapilli and Lava 
Flows from Cumbre Vieja Volcano, 2021 Eruption (La Palma, Canary Islands): Initial Reports (Parés et al., 2022). The yellow highlight is the 
research object name, the green highlight is main lithology and the blue highlight is the detailed lithology.
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      |  9ZHANG et al.

F I G U R E  7   Different Map Style of Articles. (a) A map in The Tonian Beck Spring Dolomite: Marine dolomitization in a shallow, anoxic 
sea (Shuster et al., 2018). (b) A map in Carbonate platform development in a paleoproterozoic extensional basin, Vempalle formation, 
Cuddapah basin, India (Chakrabarti et al., 2014).
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3.1  |  GeoDeepShovel system overview

We solve these problems using a human–AI collabora-
tion system design to extract data easily from PDF and 
have a better team cooperative experience. We design and 
implement some artificial intelligence modules for each 
task mentioned in §2.1. According to human–AI collabo-
ration thinking, the system can collect the data for artifi-
cial intelligence model training while assisting humans 
in finishing the tasks. All data extracted by the user in 
the system are recorded as ground truth data, and the 
user's modification process is also recorded (e.g. modi-
fying the value of a cell in a table), which will be used 
for fine-tuning and optimization of the model. Based on 
this process, the user's operation will not only complete 
the data extraction but also provide the relevant training 
data for the model. Such collaboration motivates people 
to participate and allows the machine to obtain enough 
information to improve.

As shown in Figure  8, GeoDeepShovel consists of: 
(1) an interactive graphical user interface (see Figure 9) 
including data extraction, document management, 
team management and data integration (D in Figure 9); 
(2) a back-end parse module to pre-process the PDF for-
mat files and (3) some back-end artificial intelligence 
models supporting data extraction and integration 
functions.

3.1.1  |  Implementation details

The front-end interactive web application of 
GeoDeepShovel is developed in Vue.js and hosted with 
Nginx. The web-based design of GeoDeepShovel gives it 
the ability to run in web browsers on various platforms, 
including desktops, laptops, tablets and smartphones. The 
use of Vue.js and the design of a single-page application 
bring extreme load speed similar to native apps and con-
sistent user experience across devices and platforms. The 
back-end API service of GeoDeepShovel is implemented 
with Python and FastAPI framework. The asynchronous 
coding design makes it possible to achieve higher concur-
rency with a minimal resource occupation so that it can 
support more users at the same time. We adopt a master–
slave backup MySQL database to store documents and 
extracted data, which ensures data security and efficient 
reading and writing. Regarding user system security, we 
only store and bcrypt hashed passwords to ensure that 
users' plaintext passwords will not be stored and leaked. 
Moreover, the HTTPS protocol is applied to the whole 
system of GeoDeepShovel to ensure security in network 
communication.

3.2  |  User system and 
document management

3.2.1  |  Project and file management

In order to realize the management of projects, we de-
signed the projects list interface to display the relevant 
information of each project, as shown in Figure  10a. 
Each project has a file list (see Figure 10b), which will 
show who uploaded the file, who was the last editor, 
the upload time and last edit time and whether the file 
has a principal. Users can change the project settings, 
including the text labels, the export dataset headers 
and the project description. Considering that the data-
set may contain several headers, we provide batch ed-
iting for convenience. Moreover, to better browse and 
manage literature, the document list could be filtered 
with the principal user as well as the import user and 
sorted by title, import time and latest update time. To 
go further, each user could get “My File List” contain-
ing only documents taken charge of by him/her and 
“Recent File List” containing his recently viewed docu-
ments, which allow users to obtain the documents most 
important to them and simply continue their respective 
workflows.

Considering the particularity of system functions and 
the interaction process with the back-end model, we de-
signed a file-locking mechanism to prevent more than 
one user from operating on the same file. Based on file 
lock, we implement a principal mechanism. Users can 
click the “Take Charge” button in the list to choose to 
be the “principal” in charge of a file. Then, the file can 
only be operated by the principal user, and other users 
can only read it. The user can release the file permission 
at any time.

3.2.2  |  User system for team management

To help researchers manage their teams in data extraction 
work, we preset three team roles in the system design: 
Owner, Manager and Member. The user permissions of 
the three roles are shown in Table 1.

According to the users' description of their current 
team structure and cooperation, the users intend to ensure 
the original data's controllability and distinguish different 
research projects (the same team may carry out multiple 
projects). Therefore, in team management, we ban the 
modification of the project by the Member role to prevent 
the original data from being modified. At the same time, 
to ensure the rigour of the output dataset, we only open 
the modification of project settings to the Manager and 
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      |  11ZHANG et al.

Owner. In order to meet the common scenario of cross-
team collaboration in research, we allow users to join dif-
ferent teams. Team member removal does not affect his/
her past actions.

3.3  |  Data extraction process

All the literature uploaded into GeoDeepShovel is all au-
tomatically parsed with Grobid (GRO,  2008–2021) and 

F I G U R E  8   GeoDeepShovel System overview. GeoDeepShovel consists a PDF prasing module, a backend server including some artificial 
intelligence models and a interactive graphical user interface.

F I G U R E  9   User Interface of GeoDeepShovel. The main part of this figure illustrates the table extraction and integration functions (d), 
while the system can also support meta information extraction (a), text extraction (b), map recognition and location extraction (c), and team 
and document management (e).
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12  |      ZHANG et al.

Science Parse (Tkaczyk et al., 2018). When users open a 
file from Project File List to start their work, they enter 
the data extraction interface (Figure 11). In the data ex-
traction interface, users can switch the different tabs (e.g. 
Meta, Text, Table and Map) in the area F1. The details of 
each function are in the following sections.

3.3.1  |  Metadata extraction

For each uploaded document, GeoDeepShovel uses mul-
tiple parsing tools (e.g. Grobid (GRO, 2008–2021), Science 
Parse and PdfFigures 2.0 (Clark & Divvala,  2016b)) to 
independently extract its meta-information and mix 
all the information with a voting mechanism. The 

meta-information of papers (e.g. Title, Author List, 
Abstract, Venue and Year) is extracted and indexed with 
Elasticsearch. Then, all the fields could be utilized for 
searching and retrieving the documents. As shown in 
Figure 11, users can edit and save the meta-information 
that can be joined to the output dataset.

3.3.2  |  Name entity recognition and 
extraction from text

We use weak-supervision learning models and rules to 
help highlight the focused keywords in texts and the sam-
ples' features to help them add these words to the database. 
To extract academic entities from papers in the format of 

Role
Add/remove 
manager

Add/remove 
member

Add/delete 
project

Import 
file

Project 
settings

Owner √ √ √ √ √

Manager - √ √ √ √

Member - - - √ -

T A B L E  1   The user permissions of 
each role.

F I G U R E  1 0   UI of Project and File 
Management. (a) Project List Page. User 
can see the project name and description. 
And user can delete the project here by 
right click. This page also consists the 
quickly team member add function. (b) 
File List Page. User can check the files’ 
name and status here. And they can also 
use the "Take Charge" button to be a 
"principal" in charge of a file.
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      |  13ZHANG et al.

PDF, GeoDeepShovel first utilizes PDFFigures 2.0 (Clark 
& Divvala,  2016a) to parse each text section from the 
original files. Then, some rules and the natural language 

processing library spaCy (Honnibal & Montani, 2017) are 
adopted to automatically extract entities of different types 
from the parsed text sections.

F I G U R E  1 1   UI of Meta Information Extraction. User can edit the meta information here, which can also help the system to collect the 
correct information.

F I G U R E  1 2   UI of Name Entity Recognition and Extraction. User can add/delete the entities and add them to the integrated table.
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14  |      ZHANG et al.

For example, we have a dictionary of eras' names to 
highlight the era mentioned in the PDF. Users can also 
annotate a keyword via mouse selection when they switch 
to the edit mode (F3) and select a label (F4) as shown in 

Figure 12. The keywords can be added to the output da-
tabase (refer to Section 3.3.5). Users can choose to show 
or hide some labels, which are set at the project level as 
shown in Figure 15b.

F I G U R E  1 3   UI of Data Extraction from Table. User can adjust the structure and content of the table to get the correct data.

F I G U R E  1 4   UI of Map Recognition and Location Extraction. User can adjust the recognized longitude and latitude line to get a correct 
coordinate range.
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      |  15ZHANG et al.

3.3.3  |  Data extraction from table

To help users extract the data in the table, we de-
velop the Table Extraction function (Figure  13). First, 
GeoDeepShovel uses an object detection model Detectron2 
(Wu et al., 2019) trained on TableBank (Li et al., 2019), a 
benchmark dataset for table detection, to detect the region 
of tables. Then for each table, a series of rules are adopted 
to locate each cell within it. Once users confirm the cell 
structure of a table, Tesseract (Kay, 2007) will be applied 
to detect the text in each cell and establish the final digital-
ized table.

In this part, we separate the task into three steps for 
the user to extract the table: (1) Locate the Table with the 
assistance of AI; (2) AI recognizes the table's structure, 
and users assist for a better result; (3) AI recognizes the ta-
ble's content and users can edit for final accuracy. In each 
step, the artificial intelligence models we design will help 
people to easily get the result and collect the users' adjust-
ments for model training. From the user's perspective, the 
first step is adjusting where the table is in the F5 area or 
drawing a new area as a table, then starting to recognize 
the structure. The next step is to adjust the structure that 
the system advised (F6). The system provides “add and de-
lete column/row” and “merge or split cell function.” After 
structure recognition, users can start the content recogni-
tion and edit the content in each cell (F7).

3.3.4  |  Map recognition and 
location extraction

For collecting the location of a sample, we provide a 
module that can recognize maps and calculate the lati-
tude and longitude of each point on the map (Figure 14). 
Users can draw an area (F8) that contains the map and 
mark a point by right click (F9). GeoDeepShovel will 
detect the longitude and latitude labelled at the map's 
margin and determine the map's coordinate range. 
Then, if users click any location on the map, the exact 
coordinates of the location will be automatically cal-
culated and recorded. The latitude and longitude will 
automatically be saved in the table (F10) as shown in 
Figure 14 and can be joined to the output dataset (refer 
to Section 3.3.5).

3.3.5  |  Data integration

After the data are extracted step by step, it needs to be in-
tegrated into a table to establish a database. We designed a 
single file integration and project-level integration with the 
assistance of AI to adapt to different teamwork modes. The 

user needs to set the header of the master table on the pro-
ject page (Figure 15a). The header might be the same as the 
dataset's schema and contain the attributes extracted from 
different parts of the article. Then, in the data extraction 
interface (Figure 11), when users click the Integrate but-
ton (F2), the back-end model will process the data in each 
part, including meta-information, tables, location in maps 
and texts. In this process, the back-end server will auto-
matically match the fields in the header of the master table 
with the headers of the sub-tables formed in the extraction 
of different parts, which will quickly bring all the data to-
gether. The result is shown in the F11 area in Figure 16.

After all the data in a single file have been integrated 
into a file-level summary table, the user can integrate the 

F I G U R E  1 5   The Project Settings. (a) The settings of text 
extraction. (b) The settings of data integration.
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16  |      ZHANG et al.

summary table of each file into a project-level summary 
table at the Files List interface (F12 in Figure 10b), and the 
result will be automatically downloaded.

3.4  |  Example of data extraction 
workflow using GeoDeepShovel

Since building a database and conducting big data-driven 
scientific research is long-duration work, we show an exam-
ple of a small dataset construction to demonstrate the capa-
bilities of GeoDeepShovel. The dataset's schema is shown 
in Figure 17. Each data item is about the description of a 
bioevents. The researchers need to find out some attributes’ 
values of the bioevents, including sample id (can be N/A), 
profile name, locality, latitude, longitude, age and depth.

We use the data extraction process from the article 
Palynology of the Cenomanian to lowermost Campanian 
(Upper Cretaceous) Chalk of the Trunch Borehole (Norfolk, 
UK) and a new dinoflagellate cyst bioevent stratigraphy for 
NW Europe (Pearce et al., 2020) to show how to build a 
database using GeoDeepShovel.

Usually, descriptions of the depth of bioevents and 
their ages are presented in a tabular form in such articles. 
Therefore, the first step in extracting data is to find tables 
containing biological events. GeoDeepShovel locates and 
highlights all tables in the article after the file has been 
uploaded to the system, allowing the user to quickly locate 

the table and confirm if it is the data to be extracted. Once 
it has been determined that the current table contains the 
required data, such as “Table  1 Age constraints for the 
Upper Cretaceous of the Trunch borehole,” which con-
tains details of the biological events, the user can click on 
the right-hand button to start identifying the structure in 
the table. After the user has made adjustments to the table 
structure, he/she can save and begin to identify the con-
tents of the table and perform proofreading to ensure that 
the data are correct.

F I G U R E  1 6   UI of Data Integration.

F I G U R E  1 7   The UML of age model database. The age model 
database is used to build the age model for ocean drilling projects, 
including DSDP ODP and Two IODPs (at Scripps Institution of 
Oceanography, 2013-2022).
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      |  17ZHANG et al.

The table contains the bioevents' names, depth and age 
in this example. Therefore, the rest of the data needs to be 
extracted from other parts of the article to complete the data. 
GeoDeepShovel provides a pre-label function in the text ex-
traction process, which can identify and highlight the loca-
tion name, latitude and longitude. This pre-label function is 
based on the parsing of PDF. Users can quickly target the 
desired entities or manually label and select an entity to add 
them to the final database. In this current task, the desired lo-
cation name, latitude and longitude are already pre-marked 
and highlighted, so the user only needs to select to link.

After all types of data have been extracted, research-
ers can directly integrate all the data into a pre-set data-
set structure. This step will significantly reduce the time 
spent in the workflow filling data into the forms one by 
one. Eventually, all data can be directly remitted to the 
dataset. The complete process is shown in Figure 18.

4   |   CONCLUSION AND FUTURE 
WORKS

In this paper, we present GeoDeepShovel, an online plat-
form for data extraction in the scientific literature with AI 
assistance that can help researchers cooperate with their 
teammates to extract data from PDF documents and build 
a scientific database. GeoDeepShovel can help researchers 
extract and aggregate data containing meta-information, 
tables, texts and location from the literature. The research 
team can collaborate in GeoDeepShovel, and team mem-
bers can share resources and progress with others.

We propose a novel and general collaborative frame-
work for scientific literature data extraction in geoscience, 
which can help with big data-driven discovery. By extract-
ing fine-grained data from text, tables and images in PDFs, 
the constructed database can cover different dimensions 
more completely, which is beneficial to the subsequent 
data analysis and modelling process. In GeoDeepShovel, 
the researcher makes the final decision of all data ex-
traction, and AI fully follows the user's instructions in this 
interaction process to ensure the accuracy of the data. The 
reason we designed this workflow is that due to the ac-
cumulation of errors in end-to-end approaches, the final 
outcome might be unacceptable for scientific research. 
Meanwhile, manually checking and correcting these er-
rors is a very tedious and difficult job. We would like to 
claim that we do not believe today's AI technology can 
build a “fully automated” system to replace researchers 
in data extraction. To ensure the quality of the database 
used in further research, researchers still have to clean 
and correct data manually. We think that building a hu-
man–AI collaboration solution with the appropriate level 
of automation would be a better way to solve the problem 
so that the human and AI can jointly iterate, improve and 
complete the data extraction.

There are still some technical limitations in 
GeoDeepShovel: (1) the quality of data extraction is 
greatly affected by the quality of PDF files, and we can-
not handle some low-resolution scans that are too old; 
(2) most AI models in GeoDeepShovel are based on rules 
provided by geoscientists and a relatively small amount 
of geoscience data, which may lead to some problems in 

F I G U R E  1 8   The example case workflow of using GeoDeepShovel.
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18  |      ZHANG et al.

the processing of uncovered literature; (3) in the current 
proof-of-concept stage, GeoDeepShovel does not meet all 
the types of data demands (e.g. points location in some 
scatterplots) because of the lack of relevant ground truths.

In the future, we will continuously add new modules 
and improve existing modules through rapid system iter-
ative upgrades.
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