
Neurocomputing 499 (2022) 93–105
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Investigating the geometric structure of neural activation spaces with
convex hull approximations
https://doi.org/10.1016/j.neucom.2022.05.019
0925-2312/� 2022 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: hnxxjyt@sjtu.edu.cn (Y. Jia), shaozhang@sjtu.edu.cn (S. Zhang),

wanghaiwen@sjtu.edu.cn (H. Wang), ying.wen@sjtu.edu.cn (Y. Wen), yiluofu@sjtu.
edu.cn (L. Fu), longhuan@sjtu.edu.cn (H. Long), xwang8@sjtu.edu.cn (X. Wang),
zhouch@lreis.ac.cn (C. Zhou).
Yuting Jia a, Shao Zhang a, Haiwen Wang a, Ying Wen a,⇑, Luoyi Fu a, Huan Long a, Xinbing Wang a,
Chenghu Zhou b

a Shanghai Jiao Tong University, China
b Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China

a r t i c l e i n f o
Article history:
Received 10 January 2022
Revised 8 March 2022
Accepted 2 May 2022
Available online 12 May 2022

Keywords:
Neural networks
Activation space understanding
Convex hull
a b s t r a c t

Neural networks have achieved great success in many tasks, including data classification and pattern
recognition. However, how neural networks work and what representations they learn are still not fully
understood. For any data sample fed into a neural network, we wondered how its corresponding vectors
expanded by activated neurons change throughout the layers and why the final output vector could be
classified or clustered. To formally answer these questions, we define the data sample outputs of each
layer as activation vectors and the space expanded by them as the activation space. Then, we investigate
the geometric structure of the high-dimensional activation spaces of neural networks by studying the
geometric characters of the massive activation vectors through approximated convex hulls. We find that
the different layers of neural networks have different roles, where the former and latter layers can dis-
perse and gather data points, respectively. Moreover, we also propose a novel classification method based
on the geometric structures of activation spaces, called nearest convex hull (NCH) classification, for the
activation vectors in each layer of a neural network. The empirical results show that the geometric struc-
ture can indeed be utilized for classification and often outperforms original neural networks. Finally, we
demonstrate that the relationship among the convex hulls of different classes could be a good metric to
help us optimize neural networks in terms of over-fitting detection and network structure simplification.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, neural networks have been widely used in areas
including pattern recognition and data classification [1–4]. While
they have delivered state-of-the-art performance on various tasks,
little information about their intrinsic mechanism is known by
people [5,6]. If we only use ‘accuracy’, the most widely used metric
today, to evaluate neural networks, some fundamental information
hidden behind the complicated architectures may be neglected.
There is a major problem in that the prediction mechanisms of
neural networks are black boxed, and it is difficult for us to under-
stand and explain the reasons for their prediction results [7]. More-
over, a variety of activation functions have been proposed in recent
years [8,9], and how they affect the training and application of neu-
ral networks is also a critical problem [10]. To solve the problems,
in this paper, we try to uncover the intrinsic properties of the acti-
vation spaces and corresponding activation vectors of neural net-
works. For any data sample fed into a neural network, through
several linear or nonlinear transformations, the output data vector
could be classified, clustered, recognized, etc. Thus, we consider
how the output vectors of each layer, called activation vectors,
change during the whole transformation process of a neural
network.

To date, it is still difficult for us to understand how activation
vectors are distributed and change in high-dimensional activation
spaces. Many research approaches have been proposed in recent
years with the aim of solving the problem. One straightforward
attempt to understand the structure of activation spaces would
be dimension reduction and visualization. Many related works
have been proposed, including stochastic neighbor embedding
(SNE) [11], t-distributed SNE (t-SNE) [12] and LargeVis [13]. How-
ever, dimension reduction methods may lead to data point compli-
cations (e.g., overlapping), which do not happen in the original
high-dimensional space. The other solution is to directly study
the original high-dimensional activation spaces [14–17]. Although
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somemetrics are proposed in these works to evaluate and compare
different activation spaces, they still fail to give a clear and intu-
itive description and analysis of the geometric structure of the acti-
vation spaces. Such a lack of understanding can affect the
performance and efficiency of neural network training and restrict
the application of neural networks in some areas like medical
treatment. In this paper, we consider using convex hull to help
investigate the geometric feature of activation spaces. Convex hull
illustrates the minimized geometric space of any group of data
points [18] and has been widely used in various application scenar-
ios [19–21]. Specifically, for a group of data points, we want to rep-
resent their features through a convex hull. Then, the comparison
among activation vectors from different groups can be transformed
to the investigation of their convex hulls’ geometric relationship.
As shown in Fig. 1, with data samples of different classes fed into
a neural network classifier, for any layer, we capture the high-
level structure of the activation vectors in the activation space by
characterizing the convex hull of each class and exploring the rela-
tionship (e.g., the distance and intersection ratio) among them. The
captured high-level structures could help us to understand the
function of each neural layer and then guide us to train better neu-
ral networks more effectively [22,23].

However, in actual applications and experimental processes,
considering the high dimensionality of common activation spaces,
it is computationally infeasible to obtain the exact convex hull of
high-dimensional activation vectors. Many approximation algo-
rithms have been proposed to solve this problem, but most of them
only work under some rather strong theoretical assumptions [24–
26]. Only a few algorithms could be applied on arbitrary data
points, but they still face problems such as computational ineffi-
ciency [27] and low accuracy [28]. Thus, this paper proposes a
new efficient approximate convex hull algorithm, called the
Revised Greedy Expansion (RGE) algorithm, which outperforms
existing state-of-the-art algorithms.

We investigate the activation spaces by studying the intrinsic
geometric property of the convex hull of each class and their rela-
tionships with RGE. We find that different layers of a neural net-
work play different roles: the former layers disperse data points
as far as possible, while the last few layers gather data strongly
to some clusters. Furthermore, even though a mixture of original
data samples of different classes exists, through a few layers, the
convex hulls of different classes can be completely separated.

Inspired by these findings, we combine RGE with the Nearest
Convex Hull (NCH) classifier [29] to evaluate the activation space
of each layer. The empirical results show that the geometric struc-
Fig. 1. Geometric structure investigation of activation spaces in neural networks. With
structure of the activation vectors in the activation space by characterizing the convex
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ture of convex hulls of different classes can be utilized for classifi-
cation and often outperforms the prediction result of the original
neural network. Moreover, the NCH classifier quantitatively illus-
trates the occurrence of overfitting in the neural network training
process at the layer level, which gives a new reasonable metric for
overfitting detection and neural network architecture design.

In summary, the contributions of this paper are threefold:

� We propose a novel efficient approximate convex hull algo-
rithm in high-dimensional spaces that outperforms existing
state-of-the-art algorithms.

� We present an improved understanding of the geometric struc-
ture of activation spaces through a convex hull investigation,
which helps us determine the working process of neural net-
works and the role of each layer.

� We show the outstanding performance of the NCH classifier and
give a new reasonable metric for detecting overfitting as well as
redundant layers.

2. Related work

2.1. Neural network investigation

In recent years, many researchers have investigated deep neural
networks and proposed various approaches with the aim of under-
standing neural networks.

� Neuron Investigation. These approaches try to determine the
role of each individual neuron in a trained network. For exam-
ple, Watanabe et al. [17] clustered neurons of one network layer
into several communities and interpreted the role of each com-
munity. Bau et al. [30] attempted to identify the semantics of
individual hidden neuron units of neural networks.

� Layer Investigation. These approaches consider each layer of a
neural network as a whole and investigate their corresponding
activation spaces. The intrinsic properties of neural networks
and the comparison among networks are studied with different
methods, including vector correlation analysis [31], space
match model [32] and convex analytics [16].

� Data Investigation. These approaches focus on the relationship
among data samples and the changes of their corresponding
activation vectors through layers. Considering that classification
is the most common task of neural networks, most studies
investigating data samples are conducted with neural network
classifiers. For example, Yousefzadeh [15] and Serpa [33] found
fed data samples of different classes, for a specific layer, we capture the geometric
hull of each class.
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the convex hulls of different classes of data in the dataset and
tried to explain the robustness and confidence bounds of neural
networks, respectively. Other works focused on manifolds com-
posed of activation vectors in a neural network to reveal the
microstructures of activation spaces [34] and explore the classi-
fication capacity of neural networks [14].

The methods described above try to determine the working
mechanisms of neural networks from different aspects. However,
all of them fail to answer the basic and important question of
how mixed data samples change through layers and why the out-
put activation vectors could be classified or clustered. The methods
focusing on manifolds composed of activation vectors are the best
at answering this question, but the manifold method still cannot
provide a simple and clear illustration of the geometric structure
of activation vectors in high-dimensional activation spaces.
2.2. Convex hull approximation

The convex hull approximation task is a significant problem, and
there have been many theoretical studies on it. In recent years, var-
ious efficient algorithms have been proposed in low dimensions
[35–38]. However, in high dimensions, most previous research
either only gave some theoretical calculation bounds [39,40] or
worked under some strong theoretical assumptions [25,24]. In this
paper, we do not make any theoretical assumptions or restrictions,
and thus, the approximated convex hull is more reasonable. To
approximate convex hull in high dimensions, a straightforward
approach is modeled as an enumeration problem: for each node to
find out if it lies in the convex hull of the other nodes. Generally, there
are two common ways to solve the problem: linear programming
[41,27] and triangle algorithm [42–44]. The complexities in calcula-
tion of both ways are independent of the number of dimensions,
which means the methods can scale well to high-dimensional
spaces. However, in the enumeration process, they would have
worst case complexities that depend on the square or cube of the
number of remaining nodes. Huang et al. [28] proposed a semi-
nonnegativematrix factorizationmethod with kernel trick to accel-
erate the identification of the extreme nodes in high dimensions.
However, the accuracy of the approximate convex hull constructed
by the kernelized extreme nodes is lower than that of other meth-
ods. In this paper, we try to combine the advantages of different
approaches in a unified framework to approximate high-quality
convex hulls efficiently in arbitrary high-dimensional spaces.

Recently, deep learning methods have also been introduced into
convex hull approximation problems, in which the most typical
model is the pointer network (Ptr-Net) [45]. However, a critical
problem for applying such models in high-dimensional convex hull
approximation tasks is that it is difficult to prepare training data-
sets for them. Generally, there are two aspects of this problem:
1) In very high-dimensional spaces (e.g., spaces with thousands
of dimensions), according to [46], the expected vertices of the con-
vex hull could be exponential to the number dimensions, which
means it is impossible for us to prepare proper and sufficient train-
ing datasets; 2) For each dimension, we have to prepare a new
training dataset and retrain the model. In recent years, transfer
learning has been adopted to help neural networks to merge
knowledge from different domains and work with different source
domains without retraining [47–49]. However, it requires the
semantic definition of features so that it is mostly utilized in fields
like computer vision. In the scenario of convex hull detection, the
value of each dimension of nodes contains no semantic meaning.
Therefore, it will be difficult to apply one trained convex hull
detection model in different dimensions through transfer learning.
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3. Notations

In this paper, a high-dimensional point is an activation vector
formed by the output of all neurons at any layer. We start by focus-
ing on fully connected layers of neural networks for classification.
For a well-trained neural network N with ‘ fully connected layers,

where the ith layer contains di neurons, when any one data point x
from the whole dataset X is fed into N, the output at the ith layer

can be regarded as a vector of dimension di. We use the symbol

xi 2 Rdi to represent the vector and call it the activation vector of

input x at layer i. Moreover, for each layer, we call the di-
dimensional space containing all activation vectors the activation
space of that layer. Furthermore, for a certain class C, we denote
xi;C as activation vector xi (at the ith layer) of the input x of class
C. When we are discussing a set of data, we use

Yi;C ¼ yi;C
1 ; yi;C

2 ; . . . ; yi;C
Y

n o
to represent a collection of Y ¼ jYi;C j acti-

vation vectors of the same class C in the ith layer.
4. Convex hull approximation in activation spaces

In this paper, we study the convex hulls of vectors in activation
spaces and utilize them for data classification. We believe this is an
important step towards revealing the intrinsic properties and geo-
metric structures of neural networks. Furthermore, we try to char-
acterize the geometric structures of activation spaces to explain
the phenomena found during the investigation.

For a set of points S ¼ x1; . . . ;xSf g in d dimensions, its convex
hull CH Sð Þ is defined as the smallest convex set that contains S,
and it can be written as follows:

CH Sð Þ :¼
XS
j¼1

tjxjjxj 2 S;
XS
j¼1

tj ¼ 1; tj 2 0;1½ �
( )

: ð1Þ

When the dimension d is low, the classical algorithms for con-
vex hull detection [50–52] work in O S log Sð Þ time. However, in
regard to high-dimensional data, the exact convex hull becomes
computationally infeasible with a lower bound relying exponen-
tially on the dimension d [46]. As dimensions in neural networks
are usually very high, it is natural to pursue an efficient approxima-
tion algorithm instead.
4.1. Revised greedy expansion algorithm

In this paper, we propose our algorithm, which is called Revised
Greedy Expansion (RGE), to find the convex hull of high-
dimensional points by using the greedy expansion (GE) algorithm
[27] as our reference. This algorithm provides an approximate con-
vex hull with a balance between complexity and accuracy.

The most critical problem in finding a convex hull is how to
judge whether a point v is inside or outside a set of points
S ¼ x1; � � � ;xSf g. We solve this problem by calculating the distance
from v to S. The distance d v;Sð Þ is defined as the following
dimension-independent quadratic programming problem:

d v;Sð Þ ¼ min
ai

v �
XS
i¼1

aixi

�����
�����

�����
�����
2

s:t: ai P 0;
XS
i¼1

ai ¼ 1:

ð2Þ

Obviously, v 2 CH Sð Þ if and only if d v;Sð Þ ¼ 0. Actually, we
relax this criterion to reduce the computational complexity. If
the distance d v;Eð Þ is less than a small positive number � instead
of exactly zero, we regard it as an interior point.
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Finally, for the given setS, we call E#S an �-approximation of
CH Sð Þ if for any u 2 S it holds that

d u;Eð Þ 6 �; ð3Þ
and it should be of minimal size. It requires that every point in S is
within distance � from its �-approximate convex hull CH Sð Þ. Gen-
erally, with smaller �, the approximate convex hull will be more
precise, while its calculation process will consumemore time. There
is a trade-off between approximation precision and calculation time
by tuning �, and it should be determined depending on specific
application scenarios and approximation precision requirements.

Then, we adopt a greedy expansion method to select points
fromS to compose the �-approximation convex hull. For each iter-
ation, supposing E is the set of selected points with size E ¼ jEj, we
will find

x ¼ arg min
x2SnE

max
v2SnE

d v;E [ xð Þ ð4Þ

and add it to E.

4.2. Convex hull initialization

It is noted that the time complexity for finding x is O S� Eð Þ2
� �

,

which is extremely high when E is small. We have to check every
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point one by one according to our algorithm, so we would like to
have an initial set that is as large as possible. We follow [28] to uti-
lize the Kernel Convex Hull Approximation (KCHA) approach to
obtain the startup set, in which the kernel trick is utilized to speed
up finding extreme points. KCHA is based on the semi-nonnegative
matrix factorization (Semi-NMF) for the following optimization
problem:
min
CP0

jj/ Xð Þ � / Xð ÞCjj2;

s:t: 1TC ¼ 1T ;
ð5Þ
where X ¼ x1 � � � xS½ � is a matrix containing S column vectors;
C ¼ c1 � � � cS½ � with shape S� Sð Þ encodes valuable identification
information of the extreme points; 1 is an S-dimensional column
vector with all elements of 1; and / �ð Þ denotes the kernel projection
function. In this paper, we adopt the Gaussian kernel

K X;Xð Þ ¼ / Xð ÞT/ Xð Þ, whose elements are defined as follows:
K xi;xj
� � ¼ / xið ÞT/ xj

� � ¼ exp
�jjxi � xjjj2

r2

 !
: ð6Þ
Algorithm1: Kernelized Convex Hull Approximation
Algorithm2: Revised Greedy Expansion Algorithm
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Considering K x;xð Þ ¼ 1 and K x; yð Þ > 0, one possible way to
solve Eq. (5) is to regard it as a Semi-NMF problem [28,53] and uti-
lize a solver with the multiplicative updating rule:
Ckþ1 ¼ Ck �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ Xð ÞT/ Xð Þ½ �þþ / Xð ÞT/ Xð Þ½ ��Ck
/ Xð ÞT/ Xð Þ½ ��þ / Xð ÞT/ Xð Þ½ �þCk

s

¼ Ck �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K X;Xð Þ

K X;Xð ÞCk

r
;

ð7Þ
where Ck is the calculated C after the kth iteration of updating; A � B
and A

B
denote elementwise multiplication and division between

matrices A and B, respectively; �½ �þ and �½ �� are defined as

A½ �þ ¼ Aþabs Að Þ
2 and A½ �� ¼ A�abs Að Þ

2 , respectively, where abs Að Þ is a
matrix consisting of the absolute values of the elements of matrix
A. With such an updating rule, the whole KCHA process is summa-
rized in Algorithm1.
Fig. 2. Approximate convex hulls found by the three algorithms on four toy datasets. Bot
points selected as extreme points by the respective algorithm.

Table 1
Approximation error distance and inner point ratio of the algorithms on four toy datasets

Approximation Error Distance

KCHA GE AVTA RGE

Center 0.192 0.005 0.200 0.00
Circles 0.671 0.158 0.062 0.05
Moons 2.037 0.043 0.117 0.03
Centers 0.793 0.038 0.326 0.03
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4.3. Performance and efficiency of RGE

With the greedy expansion process and the method for initial-
izing the extreme point set, the whole RGE approach is presented
as Algorithm2.

We compare RGE with three representative baselines from
three categories to evaluate its performance. KCHA aims to achieve
very high efficiency basing on semi-nonnegative matrix factoriza-
tion and kernel tricks to achieve very high efficiency. GE and AVTA
are representative algorithms to solve the convex hull expansion
enumeration problem through linear programming and triangle
algorithm, respectively.

In this section, we generate four 2-dimensional toy datasets and
apply the four algorithms to them. The detected convex hull will be
evaluated from two aspects: 1) The most important is whether the
detected convex hull cover all the nodes or not. We calculate the
largest distance from outside nodes to the detected convex hull
and denote it as Approximation Error Distance. 2) Besides, each
h the blue nodes and red crosses denote input points, and the red crosses represent

.

Inner Point Ratio

KCHA GE AVTA RGE

0 50.0% 0.0% 0.0% 0.0%
3 55.0% 8.7% 0.0% 4.3%
9 55.0% 30.4% 0.0% 16.7%
8 55.0% 10.0% 0.0% 0.0%



Table 2
Running times (sec.) of the algorithms on four toy datasets.

Algorithm Center Circles Moons Centers

KCHA 7.78 16.15 18.19 18.06
GE 2074.81 2855.46 6655.60 7568.68
AVTA 98.61 120.38 59.63 61.26
RGE 9.13 32.63 38.88 45.73

Table 3
Neural network statistics. ‘: number of hidden layers, d: number of neurons per layer, TR: training accuracy, and TE: test accuracy.

Dataset ‘ d ReLU Sigmoid

TR TE TR TE

MNIST 4 1024 1.00 0.94 0.98 0.96
CIFAR-10 4 1024 0.94 0.46 0.93 0.44
FOS-CS-5 4 1024 0.79 0.59 0.93 0.62
GOOGLE-8 4 1024 0.99 0.95 0.99 0.95
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node in the detected convex hull should be a crucial node that does
not lie in the convex hull of the other nodes. We count the ratio of
nodes lying in the convex hull of the other nodes and denote it as
Inner Point Ratio.

The results of the four algorithms on the four toy datasets are
summarized in Table 1. As we can see, the error distance of RGE
is always lower than or equal to other methods, which shows the
high accuracy of RGE. As for the aspect of the inner point ratio, both
AVTA and RGE outperform the other two methods. Although there
are some inner points for RGE on dataset Circles and Moons, con-
sidering its improvement on the error distance, the result of RGE
is still overall excellent. To more intuitively illustrate the difference
among them, we plot the detected convex hulls of the four algo-
rithms in Fig. 2. Further more, we evaluate the efficiency of the
three algorithms by directly comparing their running times, as
shown in Table 2. Benefiting from obtaining the startup convex
hull by KCHA, compared to GE and AVTA, RGE achieves a huge
improvement in efficiency.

In summary, although some baselines may outperform RGE in
some specific points, RGE takes a trade-off among accuracy and
efficiency, and achieves better usability and reliability.

5. Geometric structures of activation spaces

In this part, we build geometric descriptions for data points of
different classes in the activation spaces. A geometric description
is more intuitive than pure quantitative metrics, such as accuracy,
and it provides a better understanding of some intrinsic properties
of a neural network. We first introduce our experimental platform
and then address the three most significant results that give a
clearer picture of the macrostructure of activation spaces.

5.1. Experimental Platform

In the experiments, we adopt four datasets from two categories,
one with continuous vectors and one with discrete embeddings.

Specifically, the first category contains two well-studied image
classification datasets, MNIST[54] and CIFAR-10 [55], which con-
tain 70 k and 60 k images in 10 classes, respectively. For each data-
set, we sample 10 k images as a test set, and the others are used for
the training set.

The second category contains two datasets for the network
embedding task extracted from a large-scale knowledge graph in
1 computer security, operating systems, algorithms, world wide web and machine
learning
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the academic domain called AceKG [56]: 1) FOS-CS-5: a network
containing all the papers, authors and venues in AceKG in the five
subfields of computer science1, which contains 6.5 M nodes in 5
classes. 2) GOOGLE-8: a network containing eight venue categories
from Google Scholar2 and AceKG; the heterogeneous network con-
tains 1.2 M nodes from 8 classes. For more details about the two
datasets, refer to [56].

In this paper, to feed these two network datasets into the neural
networks, we adopt the well-known graph representation learning
algorithm, DeepWalk [57], to embed both networks into 64-
dimensional vectors and randomly select 60 k (50 k for training
and 10 k for testing) vectors for the following study. The two
embedded vector datasets are available online3.

There is a distinct difference among these datasets. Although all
of the data can be seen as vectors, the images in MNIST and CIFAR-
10 are originally continuous dense vectors, while the data in other
two datasets are embeddings of graph structures. As our work con-
centrates on the study of vectors, we believe it would be more per-
suasive to consider both types of data.

In this paper, we focus on neural networks with a fully con-
nected layer and softmax layer, i.e., the Multilayer Perceptron
Model (MLP). The reason for this choice is that a fully connected
structure is the most representative and fundamental factor in
neural networks for studying activation spaces. Although this
paper does not discuss state-of-the-art neural networks, all the
methods and experiments proposed and deployed in this paper
can also be applied to those networks. Thus, to begin, we train
two neural networks on each dataset with different activation
functions, i.e., ReLU or sigmoid. ReLU and Sigmoid are the two most
representative and commonly used activation functions in neural
networks. Moreover, the output ranges of them are 0;þ1½ Þ and
0;1ð Þ, respectively, which can show the characteristics of the acti-
vation spaces without constraint and with constraint. Except for
the activation functions, all the network structures are the same:
they contain four fully connected layers with 1024 neurons per
layer. The detailed statistics of the well-trained neural networks
are shown in Table 3. The accuracies of the networks on the train-
ing set are quite high, where the lowest accuracy (approximately
80% on FOS-CS-5 with ReLU) is still acceptable considering the dif-
ficulty of 5-class classification. Even though the networks on
CIFAR-10 and FOS-CS-5 seem to overfit, they still have the ability
to classify the data points in the training set correctly. Therefore,
2 https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng
3 https://bit.ly/embedding_datasets

https://scholar.google.com/citations?view_op=top_venues&amp;hl=en&amp;vq=eng
https://bit.ly/embedding_datasets


Fig. 3. Frequency distribution histogram of the inner class distances for five layers on four datasets. The red dashed line marks the peak of the input layer and helps to show
the shift in the peak through the layers.
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Table 4
The number of data points included in the convex hulls of other nodes within the same class in the 4th layer.

ReLU Sigmoid

Train Test Train Test

MNIST 0.0% 0.0% 9.5% 10.4%
CIFAR-10 0.0% 0.0% 90.0% 79.2%
FOS-CS-5 28.7% 28.7% 5.7% 5.2%
GOOGLE-8 0.0% 0.0% 82.2% 79.2%
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it is also meaningful to study the properties of their activation
spaces.
5.2. Distribution shift of the inner class distance

First, the most critical problem is the spatial distribution of acti-
vation vectors. Here, we try to figure this out by studying the Eucli-
dean distances between any two activation vectors of the same
class, called the inner class distances. In other words, for layer i
and class C, we calculate

d yi;C
k1
; yi;C

k2

� �
¼ jjyi;C

k1
� yi;C

k2
jj2; 8k1 – k2: ð8Þ

We visualize the results by drawing the distribution histogram
of the distance distribution for each layer and each class. Due to
space limitations, we only present the result of one class for each
dataset and each network in Fig. 3. It should be mentioned that
the results of the other classes are very similar.

In general, the distribution of the inner class distances is uni-
modal. This means that activation vectors of the same class are dis-
tributed almost uniformly, and thus, there are not many small
clusters that are distant from the others. Such a conclusion inspires
us to draw the convex hull of the activation vectors of each class,
and then the characteristics of each class could be represented
by the convex hull.

Moreover, for deeper layers, i.e., those that are closer to the out-
put layer, there are two apparent phenomena: 1) The absolute
value of the inner class distance of the network with ReLU
increases, which is closely related to the existence of adversarial
examples [58]. On the other hand, with the maximum output lim-
itation of the sigmoid function, the inner class distance of the net-
work with sigmoid increases first and then decreases. 2) Through
the four hidden layers, overall, the peaks of the distribution grad-
ually first shift to the right and then back to the left. This means
that data samples fed into the network are first scattered and then
gathered again. Especially for the 4th layer of the network with sig-
moid, there exists an obvious shift on all four datasets.
5.3. More crucial points in the lower layers

In the previous section, we found that we can analyse the char-
acteristics of the activation vectors of each class through their con-
vex hulls. Thus, in this section, we investigate the convex hull of
each class and summarize some intrinsic features of the convex
hulls. Moreover, in the following section, we investigate the rela-
tionship among the convex hulls of the different classes.

For each class, there should be some activation vectors that
form the convex hull of the class and other activation vectors that
lie in the inner part of the convex hull. Specifically, for any activa-

tion vector yi;C
k , it is obvious that if yi;C

k 2 CH Yi;C n yi;C
k

� �
, then yi;C

k is

not an extreme point, which means it is redundant for constructing
the convex hull.
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For all the discussed datasets, we implement the RGE algorithm
to identify whether any data are redundant. However, experimen-
tal results show that, from the 1st to 3rd layers, for any class C and

layer i; yi;C
k R CH Yi;C n yi;C

k

� �
is set up for over 95% k. The number of

inner points in the 4th layer (i.e., the final layer) is shown in Table 4,
which shows that, in general, activation vectors of networks with
sigmoid are denser. Especially on CIFAR-10 and GOOGLE-8, over
79% of the data points are included in the convex hulls of other
points.

Intuitively speaking, if we consider a convex hull as an approx-
imation of the knowledge learned by a neural network, this result
shows the following: 1) In the lower layers, all vectors are essential
to the corresponding conceptions; 2) In the final layer, the domain
of the knowledge contracts, and some data points can be repre-
sented by the features of other samples. Take dataset FOS-CS-5
as an example, the ratio of crucial points through all layers is
shown in Fig. 4(a). As we can see, the crucial points first increase
dramatically and then fall down. In other words, in a 4-layer
MLP, the former layers extract the features and distinguish data
points as much as possible, while the latter layers, especially the
final layer, try to cluster the dispersed data points of the same
class.
5.4. Few misinclusions in the lower layers

Now, we continue to study the relationship between an activa-
tion vector and convex hulls of different classes. For each layer, we
calculate the distance according to Eq. (2) for all possible combina-
tions of nodes and convex hulls. To reduce space, same as the pre-
vious section, we focus on FOS-CS-5, and the other datasets are
similar. Fig. 4(b) shows the ratio of data points included in the con-
vex hull of other classes through all layers of the two networks on
FOS-CS-5. We can find that the ratio of misinclusions is very low in
the 1st to 3rd layers, while the ratio increases substantially in the
final layer, which supports the conclusion presented in the last sec-
tion. Although there are some misincluded data points in the orig-
inal datasets, after one or two layer(s) of data mapping, the
misinclusions can be completely eliminated. Theoretically, there
should exist some hyperplanes that can split data points from dif-
ferent classes. However, in the following layers, misinclusions
occur again, representing a decrease in the ability to distinguish
data points. In other words, neural networks that are too deep
experience the problem of data mixing, and convex hull analysis
of the activation spaces could help us to determine the appropriate
depth of a neural network. Considering the activation vectors in
the 4th layer are directly related to the performance of neural net-
works, we also summarize the ratio of misincluded points in the
4th layer for all networks in Table 5. As we can see, in the training
stage, the misinclusion ratio of the network with ReLU on FOS-CS-5
is much more than other networks, which indicates that the neural
network with ReLU on FOS-CS-5 is less accurate. Moreover, when
we focus on the comparison between ‘Train’ and ‘Test’, we can
see that there are three networks with the missinclusion ratio on



Fig. 4. The ratio of crucial points and misinclusions through all layers on FOS-CS-5.

Table 5
The number of data points included in the convex hulls of other classes in the 4th layer.

ReLU Sigmoid

Train Test Train Test

MNIST 0.0% 0.0% 0.0% 0.0%
CIFAR-10 0.2% 2.0% 4.8% 49.6%
FOS-CS-5 16.6% 15.6% 1.1% 2.3%
GOOGLE-8 0.5% 0.7% 0.2% 0.3%
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Test over 2-times more than that on Train: ReLU on CIFAR-10, Sig-
moid on CIFAR-10, and Sigmoid on FOS-CS-5. The results also indi-
cate that the corresponding neural networks are overfitting where
the training accuracy exceeds the test accuracy 0:31 and more.
6. Nearest convex hull classification

Considering that there could be zero misinclusions among dif-
ferent classes, for any new data sample, we want to determine
whether there are some novel classification methods based on
the geometric relationship between its activation vector and the
convex hulls of classes. More specifically, in this section, we adopt
Nearest Convex Hull (NCH) classification to analyse the functional-
ity of neural networks in each activation space (i.e., each layer).
Several experiments are carried out to establish the observations
in this section. Although the convex hull may seem to be an over-
simple estimation of the distribution of activation vectors, further
experiments show that this is not the case.
6.1. Methodology

The NCH classification method was proposed in [29] and
assigns a data point to the class whose convex hull is the closest.
NCH has a good geometric interpretation and has been widely
extended [25,26].

Similar to the traditional strategy in neural networks, we divide
the datasets into training and test sets. For each layer in the trained
network, denoted as the ith layer, we run the NCH classification
algorithm as follows: 1) For any activation vector xi in the training
set, take n, the number of classes, and the convex hulls formed by
the activation vectors of all training data except xi. Different con-
vex hulls correspond to different classes, and xi takes the class of
the closest one. 2) For the test set data, we label all the activation
vectors of the ith layer as above. Now, convex hulls can be formed
by the whole training set.
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6.2. Comparative methods

We compared the performance of the NCH algorithm to the per-
formance of neural networks and classical classifiers, including
logistic regression (LR), the support vector machine (SVM), and
the k-nearest neighbour (KNN) algorithm. One large difference
from common neural networks is that now we can calculate the
training/test accuracy for all layers, rather than for only the last
layer.
6.3. Experiment setup

In this paper, we will evaluate the performance of NCH classifier
and comparative baselines in activation spaces of neural networks.
For each classifier and each activation space, activation vectors in
training and test sets are all fed into the classifier for classification.
Then, we will define training accuracy and test accuracy as the per-
cent of vectors whose predicted class is the same as its ground
truth in training and test sets, respectively.
6.4. Comparison with neural networks

We run the NCH classification algorithm on all four datasets
above, and the experimental results are summarized in Table 6.
Compared to the results in Table 3, the NCH classification method
performs better on nearly every test set in all four layers. This is a
interesting phenomenon, of which three key points should be
addressed.

First, intuitively, NCH classification is less involved than neural
networks because it has a rather clear geometric meaning. The bet-
ter accuracy could be seen as a proof of the soundness of the con-
jecture: a relatively simple geometric structure that can be utilized
for classification exists. Moreover, in the last section, we have also
built some geometric descriptions in activation spaces that support
such conjectures.



Table 6
Accuracy of NCH classification for the activation space of each layer of the two neural networks.

ReLU Sigmoid

1st
Layer

2nd
Layer

3rd
Layer

4th
Layer

1st
Layer

2nd
Layer

3rd
Layer

4th
Layer

MNIST train 0.988 0.987 0.986 0.984 0.990 0.991 0.990 0.987
test 0.983 0.980 0.979 0.976 0.985 0.980 0.972 0.963

CIFAR-10 train 0.564 0.583 0.611 0.623 0.611 0.752 0.901 0.944
test 0.522 0.519 0.508 0.494 0.494 0.491 0.459 0.440

FOS-CS-5 train 0.738 0.731 0.730 0.730 0.732 0.742 0.771 0.844
test 0.678 0.675 0.672 0.666 0.674 0.679 0.675 0.656

GOOGLE-8 train 0.963 0.969 0.977 0.979 0.961 0.967 0.964 0.961
test 0.939 0.948 0.954 0.955 0.939 0.955 0.954 0.946

Fig. 5. Accuracy of NCH classification for each layer of the two neural networks on the four datasets. ‘TR’ and ‘TE’ represent the training and test accuracy, respectively, and
they refer to the left scale. ‘TR/TE’ means the ratio of TR to TE and refers to the right scale.
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Second, compared to ReLU, networks with sigmoid tend to
show more clustering features in the training process. As shown
in Table 6, the accuracy of NCH classification on the training set
for the activation spaces of networks with sigmoid is always very
high (at least 0.844), regardless of whether the network is overfit.
In contrast, for networks with ReLU, if one network is overfit, then
its activation space for the training set will have worse geometric
clustering features; i.e., the accuracy of NCH classification on the
training set will decrease much. Such result corresponds to the
characteristics of different activation functions. The output range
of sigmoid is limited to 0;1ð Þ so that the activation vectors are also
strongly clustered, which is consistent with the classification met-
ric of NCH. No matter the neural network is overfitting or not, the
training accuracy of NCH is always pretty high. On the contrary, the
output range of ReLU is 0;þ1½ Þ, which means the activation vec-
tors are more likely to be discrete and have poorer geometric clus-
tering. Although there could also be some specific hyperplane to
separate different classes in the wide activation space (i.e., the
accuracy of the original neural network is pretty high), the robust-
ness of such hyperplane has been insufficient. In such situation, the
overfitting occurs, and the training accuracy of NCH classifier
decreases. This opens a new perspective on the study of overfitting.
We believe that, at least for networks with ReLU, the NCH classifi-
cation provides a more reliable accuracy metric that can be used to
evaluate the quality of the models in the training process. Consid-
ering ReLU has been the most popular activation function in neural
networks [59], even if the overfitting detection only works for
ReLU, it also has great application value.

Finally, as shown in Fig. 5, for networks with both activation
functions, there is manifested monotonicity considering the statis-
tics of the NCH classification’s accuracy. Especially on the MNIST
and CIFAR-10 data, the ratio of the training accuracy to the test
accuracy monotonically increases, while the test accuracy mono-
tonically decreases. This implies that if we take the NCH classifica-
tion algorithm, then it will be better to keep the output in the first
activation space, and the rest of the neural network can be simply
removed. In other words, NCH classification, or the geometric met-
ric, can also help us to choose neural networks with appropriate
depths.
6.5. Comparison with traditional classifiers

One natural question about the NCH classification algorithm for
the activation spaces is can we replace it with simpler classification
algorithms, such as the KNN algorithm. For a better understanding
of the four datasets and the trained neural networks, we also apply
some benchmark algorithms on the four datasets. As shown in
Table 7, LR, SVM and KNN with k ¼ 5 are adopted, and their train-
ing and test accuracies on the four datasets are listed.

It is shown that the NCH classification algorithm outperforms
the traditional algorithms on the MNIST, CIFAR-10 and FOS-CS-5
datasets and achieves almost the same score on GOOGLE-8. This
Table 7
Results of the benchmarks on the four datasets. LR: logistic regression, SVM: support
vector machine, KNN: k-nearest neighbor.

LR SVM KNN

MNIST train 0.928 0.942 0.981
test 0.920 0.944 0.968

CIFAR-10 train 0.495 0.445 0.505
test 0.388 0.440 0.340

FOS-CS-5 train 0.589 0.547 0.747
test 0.587 0.546 0.638

GOOGLE-8 train 0.944 0.941 0.966
test 0.940 0.938 0.955
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means that compared to the other strategy, the convex hull reveals
more information about the intrinsic properties of the activation
vectors.
7. Conclusion and future works

Our work tries to bridge the gap between the great success of
modern neural networks and the very poor understanding of
why they work so well. Compared to the previous efforts on this
topic, we propose a simple and neat idea, i.e., to study the convex
hulls of the corresponding conceptions formed by every layer of a
neural network. To fulfil this goal, we build a new convex hull
approximation algorithm that works efficiently in high-
dimensional spaces. With such an algorithm, we investigate the
geometric properties of activation spaces and propose a novel
NCH classifier to evaluate the roles and performance of the neural
network layers. Several interesting results on the functionality of
neural networks are given in this paper. 1) The neural networks
are intelligent that there are very few misinclusions in the sense
of convex hulls, especially in the lower layers. 2) Different layers
of a neural network play different roles, and the geometric proper-
ties of the activation spaces could help us choose an appropriate
depth for a neural network. 3) The NCH classifier provides a new
perspective on the study of overfitting detection and helps us to
evaluate neural networks in the training process through their
intrinsic characteristics. As the convex hull has explicit geometric
meanings, we believe our work sheds light on the intrinsic geomet-
ric properties of neural networks.

There are two important future areas we want to investigate in
the future: 1) One is to consider more state-of-the-art neural net-
works. This paper mainly focuses on MLP, one of the most funda-
mental architectures of neural networks. In recent years, more
and more different neural networks (e.g., Convolutional Neural
Network, Residual Network, and Transformer) have been proposed
successively. No matter how the architectures of neural networks
change, the fed data samples and their corresponding representa-
tions in the hidden layers are still high-dimensional vectors. There-
fore, we can also utilize RGE and NCH classifier to analyze how the
activation vectors and spaces change in these networks as well as
their geometric properties. 2) The other one is to combine the con-
vex hull investigation into the optimization of neural networks.
This paper aims to investigate well-trained neural networks with
convex hulls. In the future, we wish to explore how to train better
neural networks by tuning network architectures and hyper-
parameters according to the results of real-time convex hull
investigation.
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